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Abstract

The efficient allocation of limited resources is a classi-
cal problem in economics and computer science. In kidney
exchanges, a central market maker allocates living kidney
donors to patients in need of an organ. Patients and donors
in kidney exchanges are prioritized using ad-hoc weights de-
cided on by committee and then fed into an allocation algo-
rithm that determines who get what—and who does not. In
this paper, we provide an end-to-end methodology for esti-
mating weights of individual participant profiles in a kidney
exchange. We first elicit from human subjects a list of patient
attributes they consider acceptable for the purpose of priori-
tizing patients (e.g., medical characteristics, lifestyle choices,
and so on). Then, we ask subjects comparison queries be-
tween patient profiles and estimate weights in a principled
way from their responses. We show how to use these weights
in kidney exchange market clearing algorithms. We then eval-
uate the impact of the weights in simulations and find that the
precise numerical values of the weights we computed mat-
ter little, other than the ordering of profiles that they imply.
However, compared to not prioritizing patients at all, there
is a significant effect, with certain classes of patients being
(de)prioritized based on the human-elicited value judgments.

Introduction

As Al is deployed increasingly broadly, Al researchers are
increasingly confronted with moral implications of their
work. The pursuit of simple objectives, such as minimiz-
ing error rates, often results in systems that have unintended
consequences when they confront the real world, such as dis-
criminating against certain groups of people (O’Neil 2017).
It would be helpful for Al researchers and practitioners to
have a general set of principles with which to approach these
problems (Wallach and Allen 2008; Tolchinsky et al. 2012;
Greene et al. 2016; Conitzer et al. 2017; Noothigattu et al.
2018).

One may ask why any moral decisions should be left to
computers at all. There are multiple possible reasons. One
is that the decision needs to be made so quickly that calling
in a human for the decision is not feasible, as would be the
case for a self-driving car having to make a split-second de-
cision about whom to hit (Bonnefon, Shariff, and Rahwan
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2016). Another reason could be that each individual deci-
sion by itself is too insignificant to bother a human, even
though all the decisions combined may be highly significant
morally—for example, if we were to consider the moral im-
pact of each advertisement shown online. A third reason is
that the moral decision is hard to decouple from a computa-
tional problem that apparently exceeds human capabilities.
This is the case in many machine learning applications (e.g.,
should this person be released on bail?), but also in other
optimization problems.

We are interested in one such problem: the clearing house
problem in kidney exchanges. In a kidney exchange, patients
who need a kidney transplant and have a willing but incom-
patible live donor may attempt to trade their donors’ kid-
neys (Roth, Sonmez, and Unver 2004). Once these people
appear at an exchange, we face a highly complex problem of
deciding who matches with whom. In some exchanges, this
matching problem is solved using algorithms developed in
the Al community: the United States (Dickerson and Sand-
holm 2015), the United Kingdom (Manlove and O’Malley
2015), the Netherlands (Glorie, van de Klundert, and Wagel-
mans 2014), and so on (Bir6 et al. 2017).

In this paper, we investigate the following issue. Suppose,
in principle, that we prioritize certain patients over others—
for example, younger patients over older patients. To do so
clearly would be a morally laden decision. How should this
affect the role of the Al researcher developing these sys-
tems? From a pure algorithmic perspective, it may seem that
there is little more to this than to change some weights in
the objective function accordingly. But we argue that our
job, as Al researchers, does not end with this simple ob-
servation. Rather, we should be closely involved with the
process for determining these weights, both because we can
contribute technical insights that are useful for this process
itself, and because it is our responsibility to understand the
consequences to which these weights will lead.

Our Contributions

In this paper, we provide an end-to-end methodology for es-
timating weights of individual patient profiles in a kidney
exchange, where these weights are used only for tiebreak-
ing purposes (i.e., when multiple solutions give the maximal
number of transplants). We execute this methodology in a
limited fashion as a proof of concept, and evaluate the re-



sults in simulations. (Executing our methodology in such a
way that we would advocate directly adopting the results in
practice would require substantially more effort and partici-
pation from other parties, as will become clear.)

We first elicit from human subjects a list of patient at-
tributes they consider acceptable for the purpose of pri-
oritizing patients in kidney exchanges (e.g., most subjects
did not find race an acceptable attribute for prioritization).
Then, we ask subjects comparison queries between patient
profiles that differ only on acceptable attributes, and esti-
mate weights from their responses. We show how to use
these weights in kidney exchange market clearing algo-
rithms, to break ties among multiple maximum-sized solu-
tions. We then evaluate the impact of the weights in sim-
ulations. We find that the precise numerical values of the
weights we computed matter little, other than the ordering
of profiles that they imply. However, compared to not pri-
oritizing patients at all, there is a significant effect. Specif-
ically, the difference is experienced by donor-patient pairs
that have an “underdemanded” (Ashlagi and Roth 2014;
Toulis and Parkes 2015) combination of blood types; for
them, their chances rise or drop significantly depending on
their tiebreaking weights.

Kidney Exchange Model

We briefly review the standard mathematical model for kid-
ney exchange and techniques from the Al community used
to clear real kidney exchanges, and then give illustrative ex-
amples where tiebreaking would or would not play a role.

Graph Formulation

In this work, as is standard (Roth, Sonmez, and Unver 2004;
Roth, Sénmez, and Unver 2005a; 2005b), we encode an
instance of a kidney exchange as a directed compatibility
graph G = (V, E). We first construct one vertex for each
patient-donor pair in the pool. Then, we construct an edge
e from vertex v; to vertex v; if the patient in v; wants and
is compatible with the donor kidney of v;. A paired donor
is willing to give her kidney if and only if the patient in her
vertex v; receives a kidney.

Most fielded exchanges also assign a weight w, to an edge
e; the function determining the weight for an edge is of-
ten opaque and set in an ad-hoc fashion by a committee;'
it roughly represents the utility to v; of obtaining v;’s donor
kidney, but can also be used to (de)prioritize specific classes
of patient or donor, as we discuss later. A cycle c represents
a possible sequence of transplants, with each vertex in ¢ ob-
taining the kidney of the previous vertex. We use the term
k-cycle to refer to a cycle with exactly k pairs. For example,
the compatibility graph in Figure 1 includes two possible
2-cycles: a 2-cycle between vertex v; and vo, and a differ-
ent 2-cycle between vertex vy and vs. In kidney exchange,
cycles of length at most some small constant L (typically,
L € {2,3,4}) are allowed—all transplants in a cycle must

'For a look into the inner workings of the process that sets edge
weights, we direct the reader to a recent report by the UNOS US-
wide kidney exchange (UNOS 2015).

be performed simultaneously so that no donor backs out af-
ter his patient has received a kidney but before he has do-
nated his kidney.

di @) — > dy(B) — — d3@)
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Figure 1: A compatibility graph with three patient-donor
pairs and two possible 2-cycles. Donor and patient blood
types are given in parantheses.

Many fielded kidney exchanges gain great utility through
the use of chains (Montgomery et al. 2006; Rees et al. 2009;
Anderson et al. 2015; Ashlagi et al. 2017). Chains start with
an altruist donor donating her kidney to a patient, whose
paired donor donates his kidney to another patient, and so
on. In the standard model, altruistic donors are represented
in the same way as patient-donor pairs, but with so-called
“dummy” patients who are compatible with every patient-
donor pair, yet do not require a kidney. In this way, altruists
and patient-donor pairs—as well as cycles and chains—can
be treated similarly in optimization models.

A matching M is a set of disjoint cycles and chains in the
compatibility graph G. There can be length limits on these
cycles and chains, as discussed above, resulting in a smaller
set of legal matchings. The cycles and chains must be dis-
joint because no donor can give more than one of her kidneys
(some recent work explores multi-donor donation (Ergin,
Soénmez, and Unver 2017; Farina, Dickerson, and Sandholm
2017) but we do not consider this here). Given the set of all
legal matchings M, the clearing house problem is to find a
matching M™* that maximizes utility function v : M — R.
Formally:

M* € argmaxu(M)
MeMm

Kidney exchanges typically use a utilitarian utility func-
tion that finds the maximum weighted cycle cover (i.e.,
u(M) = > .crr 2 ece We)- This can favor certain classes
of patient-donor pairs while marginalizing others, a behav-
ior we investigate later in this paper in the context of setting
specific edge weights. Alternate utility functions can be used
to enforce incentive properties via mechanism design (Ash-
lagi and Roth 2014; Li et al. 2014; Hajaj et al. 2015;
Blum et al. 2017; Mattei, Saffidine, and Walsh 2017).

Clearing Kidney Exchanges

We briefly discuss optimization methods for clearing kidney
exchanges; later, we show how to augment these methods
to incorporate the ideas in this paper. The standard clear-
ing house problem for finite cycle cap L > 2 (even without
chains) is NP-hard (Abraham, Blum, and Sandholm 2007;
Biré, Manlove, and Rizzi 2009), and is also hard to ap-
proximate (Biré and Cechlarovd 2007; Luo et al. 2016;
Jia et al. 2017). Thus, fielded kidney exchanges use integer
program (IP) formulations to solve this difficult combinato-
rial optimization problem.



The first approach to clearing large kidney exchanges,
due to Abraham, Blum, and Sandholm (2007), built a cus-
tom branch and price (Barnhart et al. 1998) integer program
solver; generalizations of, and improvements on, their ba-
sic model have addressed scalability issues (Dickerson, Pro-
caccia, and Sandholm 2013; Glorie, van de Klundert, and
Wagelmans 2014; Anderson et al. 2015; Dickerson et al.
2016). We build a similar model in this work.

Formally, denote the set of all chains of length at most K
and cycles of length no greater than L by C(L, K). Create a
binary variable =, € {0,1} for every ¢ € C(L, K), and let
We = Y .. We; then, solve the following integer program:

max z We T s.t. Zxcgl YveV.

ceC(L,K) ciw€Ec

The final matching is the set of chains and cycles ¢ such
that z. = 1. In this paper, we compare to a baseline where all
edge weights are 1, so that a maximum-cardinality solution
is sought. We then break ties in these solutions based on
prioritization weights determined according to the procedure
outlined in this paper.

Tiebreaking and Prioritization: Examples

Consider again the compatibility graph given in Figure 1.
Here, there is one pair with a patient of blood type A and a
donor of blood type B, and two pairs with a patient of blood
type B and a donor of blood type A. One of the latter two
pairs will have to remain unmatched; either way, we obtain
a solution of maximum cardinality (two vertices matched).
The standard algorithm may choose either solution; which
one is chosen depends on details of the solver. We may wish
to break the tie based on other attributes of the two patients
with blood type B, such as their age. We will explore this in
this paper.

ds, (0) dy (B)
p2 (AB) p4 (O)
dy (AB) ds (AB)
p1(0) p3 (B)

Figure 2: A compatibility graph with four patient-donor
pairs and two maximal solutions. Donor and patient blood
types are given in parentheses.

Now, consider the graph in Figure 2. This graph has two
maximal solutions (a solution is maximal if it is not pos-
sible to include any other vertices without dropping others
from the solution). One consists of the 3-cycle with vertices
AB-O, O-A, and A-AB (patient listed first in each case).
The other consists of the 2-cycle with vertices AB-O and
O-AB. The standard algorithm must choose the 3-cycle, be-
cause it matches more vertices. While in principle one might

consider choosing the 2-cycle, arguing that (due to other at-
tributes) it is more important to save the patient from the
O-AB vertex than it is to save both the patient from the O-A
vertex and the patient from the A-AB vertex, in this paper
we will not do so; we will always choose the 3-cycle, no
matter what the values of the additional attributes are.

Determining and Using Prioritization Weights

In this section, we describe our procedure for computing pri-
oritization weights and integrating them into the algorithm
for clearing kidney exchanges.

Selecting Attributes

First, we determined which patient attributes to include in
our model by assessing which attributes a pool of human
participants found acceptable to use for this purpose. The
attributes were generated by the participants in an open-
ended survey to minimize experimenter bias. Specifically,
participants (N = 100) were recruited through the online
platform Amazon Mechanical Turk, and asked to read a
brief description of the kidney transplant waiting list pro-
cess. Each participant then reported which attributes they
thought should, and should not, be used to prioritize kidney
transplant patients. Each participant received $0.85 compen-
sation for their participation. Participants’ responses were
sorted into attribute categories by two independent coders.
Attributes that the algorithm already takes into account, such
as patient-donor medical compatibility, were discarded. The
number of participants who mentioned each of the remain-
ing attributes were counted.

The three attribute categories that the most participants
thought should be used to prioritize patients were “Age”,
“Health - Behavioral” (aspects of health that are generally
perceived to be controllable, such as diet and drug use), and
“Health - General” (aspects of health that are generally per-
ceived to be involuntary and are unrelated to kidney disease,
such as cancer prognosis). There was a sharp drop-off in
popularity between the third most popular category, “Health
— General” (reported 44 times) and the fourth most popular
one, “Dependents” (whether the patient had dependents, re-
ported 18 times), so only the first three attribute categories
were selected for inclusion in the next stage of the study.

Evaluating Pairwise Comparisons

We next gathered data on how people use the three top
participant-generated attributes to prioritize patients. We ad-
ministered a “Kidney Allocation Survey” to a new cohort
of participants recruited through MTurk. In this survey, we
turned each of the three chosen attributes into a binary one,
as described in Table 1 below. The Age alternatives repre-
sent an adult nearer to the beginning of their adult life (but
still of legal drinking age, 30 years old) or nearer to the end
(70 years old). For a health-behavioral attribute, we chose
alcohol consumption as a (potentially) controllable behav-
ior that contributes to kidney disease. The indicated amount
of alcohol consumption is specified to occur “prior to diag-
nosis,” because drinking afterward disqualifies patients from
the waiting list. Skin cancer was chosen as the “unhealthy”



alternative for the Health-General characteristic because it is
a specific, well-known disease that may or may not be fatal.

| Attribute | Alternative O | Alternative 1 ‘
Age 30 years old (Young) | 70 years old (Old)
Health - 1 alcoholic drink per | 5 alcoholic drinks
Behavioral month (Rare) per day (Frequent)
Health - no other major health | skin cancer in re-
General problems (Healthy) mission (Cancer)

Table 1: The two alternatives selected for each attribute. The
alternative in each pair that we expected to be preferable was
labeled “0”, and the other was labeled “1”.

Because there are three binary attributes, there are eight
possible patient profiles. These eight unique patient profiles
were enumerated and assigned ID numbers. In the survey,
participants were asked to choose between pairs of these
profiles. Participants (N = 289) were again recruited through
MTurk. They read a short description of how kidney waiting
lists work, and were asked to imagine that they were respon-
sible for allocating a single kidney to one of two fictional pa-
tients. Each participant was then presented with all (g) =28
possible pairs of profiles, in random order, and asked in each
case to select the patient that they believed should receive
the kidney. For half of the participants, the profile with the
smaller ID number appeared on the screen above the profile
with the larger ID number for each question (“original or-
der”), and for the other half of the participants this order was
reversed (“reversed order”), to counteract possible ordering
or screen location effects. Each participant received $1.00
compensation for participating in this part of the study.

Summary of Responses Aggregate responses to the Kid-
ney Allocation Survey are summarized below. The “Pre-
ferred” column reports the percentage of times that each pro-
file was chosen in all the comparisons in which it appeared.

| Profile | Age

Drinking [ Cancer | Preferred |

1 (YRH) 30 rare healthy | 94.0%
3 (YRC) 30 rare cancer | 76.8%
2 (YFH) 30 frequently| healthy | 63.2%
5 (ORH) 70 rare healthy | 56.1%
4 (YFC) 30 frequently| cancer | 43.5%
7 (ORC) 70 rare cancer | 36.3%
6 (OFH) 70 frequently | healthy | 23.6%
8 (OFC) 70 frequently| cancer | 6.4%

Table 2: Profile ranking according to Kidney Allocation Sur-
vey responses. The “Preferred” column describes the per-
centage of time the indicated profile was chosen among all
the times it appeared in a comparison.

As expected, there was a clear preference for profile 1 (30
years old, 1 alcoholic drink per month, no other major health
problems), and a clear preference against profile 8 (70 years
old, 5 alcoholic drinks per day, skin cancer in remission).
The preference for profile 3 (skin cancer in remission but

minimal drinking) over profile 2 (healthy other than heavy
drinking), and similarly 7 over 6, suggests that participants
put greater weight on the health-behavioral attribute than on
the health-general one. (Of course, this observation may not
generalize to other health-behavioral and health-general at-
tributes, such as drinking soda and paralysis.)

Estimating Profile Scores

We performed statistical modeling of participants’ pairwise
comparisons between patient profiles in order to obtain
weights for each profile. We used the Bradley-Terry model,
which treats each pairwise comparison as a contest between
a pair of players (Bradley 1984). Under this model, each
player ¢ has a score p;, representing its skill or value. Given
two players ¢ and j with respective scores p; and p;, the
probability that player ¢ will win the contest is:

_ b
Di +Dj

In our context, each player is a patient profile, and each
contest is a human subject comparison between two pro-
files. In each “contest”, the profile that a participant se-
lects is the one that wins. For example, suppose there are
only two profiles, 1 and 2; in comparisons between them,
one subject selected 1 and the next subject selected 2. For
profile scores p; and po, the probability of this would be
p1p2/(p1 + p2)?, which is maximized when p; = po. The
BT scores (that we estimate based on our data) then con-
stitute one measure of the value that the survey participants
collectively place on “saving” each profile. The higher this
value, the more likely a randomly selected participant is to
select that profile over another. We can then use these scores
as weights. (One may wonder whether perhaps it would be
better to somehow transform—e.g., take the square root of—
the weights first; one of our experiments below suggests this
would make almost no difference.) This estimation proce-
dure constitutes a specific way to aggregate the human sub-
jects” moral judgments into a single weight for each profile;
the strategy of using social choice theory to aggregate moral
preferences for decision making has already been proposed
by several groups (Greene et al. 2016; Conitzer et al. 2017;
Noothigattu et al. 2018), and our specific approach fits well
in the literature on interpreting voting as a method for sta-
tistically estimating an underlying truth (for an overview,
see Elkind and Slinko (2015)).

We estimate BT scores in two different ways. One is to
estimate scores directly for all profiles, so one profile’s score
is not constrained by the scores of other profiles. The second
is to consider the importance of the individual attributes and
let the score of profile ¢ be a linear function of these:

P(i>j) =

p
S G + U
r=1

where x;, is profile 7’s value for attribute r, and we estimate
the S, (importance of attribute 7). The U; are individual er-
ror terms where U; ~ N (0, 0?), resulting in correlation be-
tween comparisons that share a common profile.



We used the BTm () function in the BradleyTerry2 pack-
age in R to estimate profile scores pq, ..., ps based on the
8092 pairwise comparisons, both directly and as a function
of the estimated scores of their three attribute values. The
most-preferred profile, profile 1 in both cases, was assigned
a score of 1. The results are in the following table.

| Profile | Direct | Attribute-based ‘
1 (YRH) 1.000000000 1.00000000
3 (YRC) 0.236280167 0.13183083
2 (YFH) 0.103243396 0.29106507
5 (ORH) 0.070045054 0.03837135
4 (YFC) 0.035722844 0.08900390
7 (ORC) 0.024072427 0.01173346
6 (OFH) 0.011349772 0.02590593
8 (OFC) 0.002769801 0.00341520

Table 3: The patient profile scores estimated using the
Bradley-Terry Model. The “Direct” scores correspond to al-
lowing a separate parameter for each profile (we use these in
our simulations below), and the “Attribute-based” scores are
based on the attributes via the linear model.

Adapt Algorithm

The final step was to incorporate the obtained weights into
the kidney exchange market clearing algorithm. Because our
human subjects data and analysis do not involve compar-
isons between differing quantities of patient profiles (e.g.,
choosing two patients with profile 1 over three patients with
profile 2), we feel it is inappropriate to use the weights for
such decisions. We only use the weights to break ties be-
tween solutions of maximum cardinality.

To find a matching, our adapted (prioritized) algorithm
first runs the basic IP-based algorithm due to Abraham,
Blum, and Sandholm (2007) with unit edge weights (i.e.,
we = 1 Ve € E). Our algorithm records the number of pa-
tients that receive a kidney in this solution as (), and adds
a new constraint to the IP requiring that the solution in-
cludes at least (Q vertices. We then re-solve the IP with a
new objective, using the weights corresponding to the pa-
tient profile scores derived from the survey responses. For-
mally, with |c| denoting the number of vertices in cycle c,
type : V. — {1,...,8} mapping a vertex to its patient’s
profile, and wy denoting the score of profile 6, we solve:

max ZCGC(L,K) Z(u,v)ec wtype(v)} Te
St D peeTe <1
cec(rx) lclze 2 Q
This results in a set of kidney exchange cycles that includes
the maximum possible number of patients, but prioritizes pa-
tient profiles that the surveyed population preferred.

YveV

Experiments

Having described how we obtained weights and how we in-
tegrated these weights into the IP-based algorithm, we now
describe our experiments testing the effects of our prioritiz-
ing algorithm in simulations.

Experimental Setup

Based on previously developed tools (Dickerson and Sand-
holm 2015), we built a simulator to mimic daily matching in
a real-world kidney exchange pool.? In the simulation, each
day, some incompatible patient-donor pairs enter the simu-
lated pool and some depart. Then, a matching algorithm is
run to match a subset of compatible patient-donor pairs. The
remaining incompatible pairs stay in the pool for consider-
ation on the next day (and possibly beyond). Finally, the
matches formed the previous day are executed with a cer-
tain success probability, and the matched pairs are removed
from the pool. The demographics of our simulated pool were
designed to reflect the UNOS kidney exchange pool where
possible, and otherwise the general US population.

Experiment 1: Matchings with pair scores

Experiment In the first experiment, we compared the
patient-donor pairs (vertices) matched by the original algo-
rithm, which treats all profiles equally and breaks ties arbi-
trarily, to the pairs matched by the “prioritized” algorithm,
which breaks ties towards pairs with higher (patient) profile
scores. We ran 20 simulations of daily matching over the
course of 5 simulated years using both algorithms.

We hypothesized that the original algorithm would match
pairs in approximately the same proportion for every pro-
file, but that the prioritizing algorithm would match pairs
with higher profile scores more often than pairs with lower
scores. Moreover, we hypothesized that the pairs with the
highest profile scores (profiles 1, 3, and 2) would be matched
more often by the prioritizing algorithm than by the original
algorithm, and that the pairs with the lowest profile scores
(profiles 7, 6, and 8) would be matched more often by the
original algorithm than the prioritizing algorithm.

Results The proportions of pairs of each profile type
matched by the original and prioritizing algorithms are plot-
ted in Figure 1 below. “Proportion Matched” is the propor-
tion of pairs that entered the pool that were subsequently
matched. Both algorithms matched approximately 61.7% of
pairs overall. (This result does not follow immediately from
the fact that both algorithms match the maximum number
of pairs in each round, because which specific profiles are
matched in a round will affect which profiles appear in fu-
ture rounds, and consequently may affect how many can be
matched in future rounds.)

The results support both of our hypotheses. First, the orig-
inal algorithm, called “STANDARD” in Figure 3, matched
pairs approximately 62% of the time, regardless of their
profile, while the prioritizing algorithm, called “PRIORI-
TIZED” in Figure 3, matched the pairs with profile 1, who
had the highest profile scores, nearly twice as often as it
matched pairs with profile 8, who had the lowest profile
scores. Secondly, pairs with profiles 1, 3, and 2 were indeed
matched substantially more often by the prioritizing algo-
rithm than by the original algorithm, while pairs with pro-
files 7, 6, and 8 were indeed matched substantially less often

2All code for this paper can be found in the Ethics package
of github.com/JohnDickerson/KidneyExchange.



by the prioritizing algorithm than by the original algorithm.
Thus, the scores assigned by the prioritizing algorithm do
have a substantial effect on which profiles get matched.
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Figure 3: The proportions of pairs matched over the course
of the simulation, by profile type and algorithm type. N =
20 runs were used for each box. The numbers are the scores
assigned (for tiebreaking) to each profile by each algorithm
type. Because the STANDARD algorithm treats all profiles
equally, it assigns each profile a score of 1. In this figure
and later figures, each box represents the interquartile range
(middle 50%), with the inner line denoting the median. The
whiskers extend to the furthest data points within 1.5 x the
interquartile range of the median, and the small circles de-
note outliers beyond this range.

Experiment 2: Matchings evaluated by blood type

Experiment To further explore how the modified algo-
rithm prioritizes pairs with high profile scores at the ex-
pense of pairs with lower profile scores, we again ran 20
simulations of 5 simulated years of daily matching, this time
recording the patient and donor blood types of each pair in
addition to their profiles. We partitioned pairs into four es-
tablished blood type classes motivated by large market anal-
ysis (Ashlagi and Roth 2014; Toulis and Parkes 2015). Un-
derdemanded pairs were those that contain a patient with
blood type O, a donor with blood type AB, or both, making
them the most difficult to match. Overdemanded pairs con-
tain a patient with blood type AB, a donor with blood type
O, or both; self-demanded pairs contain a patient and donor
with the same blood type; and reciprocally demanded pairs
contain one person with blood type A, and one person with
blood type B. These three classes are substantially easier to
match. We hypothesized that the prioritizing algorithm pri-
marily impacts underdemanded pairs, prioritizing underde-
manded pairs with higher profile scores at the expense of un-
derdemanded pairs with lower profile scores, while match-
ing pairs that belong to the three other blood type classes
at roughly the same high rates that the original algorithm
does. The reasoning was that, intuitively, there is generally
a scarcity of matching opportunities for the underdemanded
pairs, but this is not so for the other types of pairs.

Results The results confirm our hypotheses. The propor-
tions of underdemanded pairs matched are plotted in Fig-
ure 4. We found the proportions of overdemanded, self-
demanded, and reciprocally demanded profiles matched to
be fairly similar, so we grouped them together in Figure 5.
The prioritizing algorithm matched underdemanded pairs
with high profile scores substantially more often and under-
demanded pairs with low scores substantially less often than
the original algorithm did, but both algorithms matched pairs
of other classes at roughly equal rates. This suggests that the
primary difference between the algorithms lies in how they
treat underdemanded pairs.
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Figure 4: The proportions of underdemanded pairs matched
over the course of the simulation, by profile type and algo-
rithm type. N = 20 runs were used for each box.
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Figure 5: The proportions of overdemanded, self-demanded,
and reciprocally demanded pairs grouped together matched
over the course of the simulation, by profile type and algo-
rithm type. N = 60 runs were used for each box.

Experiment 3: Transforming Bradley-Terry scores

Experiment One may well wonder whether using the
Bradley-Terry scores as weights is well motivated, espe-
cially because the difference in scores between the top two



profiles is so large. This difference reflects that it is very un-
likely that the top profile would not be preferred by a subject,
but this does not imply that saving someone of profile 1 is
more than four times as important as saving someone of pro-
file 3. Presumably, the ideal weights used in the algorithm
would be monotonically increasing in the BT scores, but it
is not clear that they should be proportional. To explore the
impact of this on the matchings produced by the prioritizing
algorithm, we tried alternative weights, given below.

Profile
1 2 3 4 5 6 7 8
ORIGINAL 1 .103 .236 .036 .070 .011 .024 .003
LINEAR 1 998 .999 .996 997 994 995 .993

Table 4: Two weight vectors. The first represents the original
BT scores as used in PRIORITIZED; the second agrees with
the BT scores on the ordering, but the weights are linear in
the rank of the profile, as used in LINEAR PRIORITIZED.

The alternative weights result in the profiles being ranked in
the same order as the BT scores, but make the difference be-
tween sequential weights small and identical. We again ran
20 simulations of 5 simulated years of daily matching, this
time comparing the prioritized algorithm using the original
BT scores as weights to the prioritized algorithm using the
alternative weights. We hypothesized that the profile rank-
ing was primarily responsible for the differences in match-
ing and that beyond this, the magnitude of the BT scores
would not have a great impact. Hence, since both of these
vectors of weights rank profiles the same, we expected them
to match profiles in very similar proportions.

Results The proportions of pairs matched using each
weight vector are plotted in Figure 6. The matching using
the original weights is again called “PRIORITIZED”, while
the matching using the new weight vector is called “LIN-
EAR PRIORITIZED”. The results confirm our hypothesis.
There was very little difference in the matchings produced
by the PRIORITIZED and LINEAR PRIORITIZED algo-
rithms, and what difference there was could be easily ex-
plained by the fact that a slightly different set of pairs en-
ter the pool for each algorithm type. We also tried other
weight vectors that assigned different weights to each pro-
file, but that agreed with the initial prioritizing algorithm on
the order of the profiles, and found similarly little difference.
These results suggest that the profile ranking induced by the
weights is primarily responsible for the impact of the pri-
oritizing algorithm, while beyond that varying the weights
makes little difference.

Discussion

Our study serves as a proof of concept for the proposed
method of soliciting and using prioritization weights, but we
do not advocate directly applying the weights obtained in
our limited study to a real kidney exchange. For one, a real
kidney exchange would require each of the attributes consid-
ered to be able to take more possible values than we tested in
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Figure 6: The proportions of underdemanded pairs matched
over the course of the simulation, by profile and algorithm.
The “PRIORITIZED” algorithm matches using the original
profile weights, while the “LINEAR PRIORITIZED” algo-
rithm matches using the alternative weights given above.

our mere pairwise comparisons (e.g., there should be more
than two values for “age”). Whoever eventually makes the
judgments about who should be prioritized (in our study this
was left to MTurkers, who may not be representative of the
general population) should also have a chance to obtain ex-
pert advice—for example, about what the prognosis is for
someone with skin cancer in remission. Generally, deploy-
ing these techniques in a real kidney exchange should be
done with input from representatives of all the stakeholders
in such a system—patients, donors, surgeons, other hospital
staff, etc. How to best structure the process as a whole is an
important topic for future research.

That being said, our work demonstrates that there are no
fundamental technical obstacles to building such a system.
We have shown one way in which moral judgments can be
elicited from human subjects, how those judgments can be
statistically modeled, and how the results can be incorpo-
rated into the algorithm. We have also shown, through sim-
ulations, what the likely effects of deploying such a priori-
tization system would be, namely that underdemanded pairs
would be significantly impacted but little would change for
others. We do not make any judgment about whether this
conclusion speaks in favor of or against such prioritization,
but expect the conclusion to be robust to changes in the pri-
oritization such as those that would result from a more thor-
ough process, as described in the previous paragraph. We
also expect the conclusion to hold if the method is applied
to real rather than simulated data: while the distribution of
donor and patient data in real kidney exchanges is surely dif-
ferent from the simulated one, there are no obvious reasons
to suspect that this would change our qualitative conclusion.

Besides being applicable to kidney (and perhaps other or-
gan) exchanges, our study also suggests a roadmap for au-
tomated moral decision making in other domains. For ex-
ample, the idea of obtaining human subjects’ judgments to
guide Al systems in moral decision making is also being ex-
plored for self-driving cars (Bonnefon, Shariff, and Rahwan

LINEAR PRIOAITIZED



2016; Noothigattu et al. 2018). Some aspects of that domain
are different. In particular, in that case the need for auto-
mated decision-making is driven by the fact that decisions
need to be made too fast to be made by a human, whereas
in kidney exchanges the need for Al is driven by the fact
that the nature of the search space of all possible matchings
makes the problem intractable for a human. Nevertheless,
the domains clearly have much in common, and it seems
likely that we will be confronted with similar problems in
many others. Further research should eventually lead us to
a good understanding of best practices for automated moral
decision making by generalizing from human judgments.
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