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ABSTRACT

Specifying reward functions for robots that operate in environments without a natural reward signal
can be challenging, and incorrectly specified rewards can incentivise degenerate or dangerous behavior.
A promising alternative to manually specifying reward functions is to enable robots to infer them
from human feedback, like demonstrations or corrections. To interpret this feedback, robots treat
as approximately optimal a choice the person makes from a choice set, like the set of possible
trajectories they could have demonstrated or possible corrections they could have made. In this work,
we introduce the idea that the choice set itself might be difficult to specify, and analyze choice set
misspecification: what happens as the robot makes incorrect assumptions about the set of choices from
which the human selects their feedback. We propose a classification of different kinds of choice set
misspecification, and show that these different classes lead to meaningful differences in the inferred
reward and resulting performance. While we would normally expect misspecification to hurt, we find
that certain kinds of misspecification are neither helpful nor harmful (in expectation). However, in
other situations, misspecification can be extremely harmful, leading the robot to believe the opposite
of what it should believe. We hope our results will allow for better prediction and response to the
effects of misspecification in real-world reward inference.

1 Introduction

Specifying reward functions for robots that operate in environments without a natural reward signal can be challenging,
and incorrectly specified rewards can incentivise degenerate or dangerous behavior [14, 13]. A promising alternative
to manually specifying reward functions is to design techniques that allow robots to infer them from observing and
interacting with humans.

These techniques typically model humans as optimal or noisily optimal. Unfortunately, humans tend to deviate from
optimality in systematically biased ways [12, 5]. Recent work improves upon these models by modeling pedagogy [9],
strategic behavior [23], risk aversion [15], hyperbolic discounting [7], or indifference between similar options [4].
However, given the complexity of human behavior, our human models will likely always be at least somewhat
misspecified [22].

One way to formally characterize misspecification is as a misalignment between the real human and the robot’s
assumptions about the human. Recent work in this vein has examined incorrect assumptions about the human’s
hypothesis space of rewards [3], their dynamics model of the world [19], and their level of pedagogic behavior [16].
In this work, we identify another potential source of misalignment: what if the robot is wrong about what feedback
the human could have given? Consider the situation illustrated in Figure 1, in which the robot observes the human
going grocery shopping. While the grocery store contains two packages of peanuts, the human only notices the more
expensive version with flashy packaging, and so buys that one. If the robot doesn’t realize that the human was effectively
unable to evaluate the cheaper package on its merits, it will learn that the human values flashy packaging.

We formalize this in the recent framework of reward-rational implicit choice (RRiC) [11] as misspecification in the
human choice set, which specifies what feedback the human could have given. Our core contribution is to categorize
choice set misspecification into several formally and empirically distinguishable “classes”, and find that different types
have significantly different effects on performance. As we might expect, misspecification is usually harmful; in the
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Figure 1: Example choice set misspecification: The human chooses a pack of peanuts at the supermarket. They only
notice the expensive one because it has flashy packaging, so that’s the one they buy. However, the robot incorrectly
assumes that the human can see both the expensive flashy one and the cheap one with dull packaging but extra peanuts.
As a result, the robot incorrectly infers that the human likes flashy packaging, paying more, and getting fewer peanuts.

most extreme case the choice set is so misspecified that the robot believes the human feedback was the worst possible
feedback for the true reward, and so updates strongly towards the opposite of the true reward. Surprisingly, we find that
under other circumstances misspecification is provably neutral: it neither helps nor hurts performance in expectation.
Crucially, these results suggest that not all misspecification is equivalently harmful to reward inference: we may be able
to minimize negative impact by systematically erring toward particular misspecification classes defined in this work.
Future work will explore this possibility.

2 Reward Inference

There are many ways that a human can provide feedback to a robot: demonstrations [18, 1, 24], comparisons [20, 6],
natural language [8], corrections [2], the state of the world [21], proxy rewards [10, 17], etc. Jeon et al. propose a
unifying formalism for reward inference to capture all of these possible feedback modalities, called reward-rational
(implicit) choice (RRiC). Rather than study each feedback modality separately, we study misspecification in this general
framework.

RRiC consists of two main components: the human’s choice set, which corresponds to what the human could have
done, and the grounding function, which converts choices into (distributions over) trajectories so that rewards can be
computed.

For example, in the case of learning from comparisons, the human chooses which out of two trajectories is better. Thus,
the human’s choice set is simply the set of trajectories they are comparing, and the grounding function is the identity. A
more complex example is learning from the state of the world, in which the robot is deployed in an environment in
which a human has already acted for T timesteps, and must infer the human’s preferences from the current world state.
In this case, the robot can interpret the human as choosing between different possible states. Thus, the choice set is the
set of possible states that the human could reach in T timesteps, and the grounding function maps each such state to the
set of trajectories that could have produced it.

Let ξ denote a trajectory and Ξ denote the set of all possible trajectories. Given a choice set C for the human and
grounding function ψ : C → (Ξ→ [0, 1]), Jeon et al. define a procedure for reward learning. They assume that the
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CR ⊂ CH CR ⊃ CH CR ∩ CH
c∗

∈ CR ∩ CH A1 A2 A3
∈ CR\CH B2 B3

Table 1: Choice set misspecification classification, where CR is the robot’s assumed choice set, CH is the human’s
actual choice set, and c∗ is the optimal element from CR ∪ CH . B1 is omitted because if CR ⊂ CH , then CR\CH is
empty and cannot contain c∗.

human is Boltzmann-rational with rationality parameter β, so that the probability of choosing any particular feedback is
given by:

P(c | θ, C) =
exp(β · Eξ∼ψ(c)[rθ(ξ)])∑

c′∈C exp(β · Eξ∼ψ(c′)[rθ(ξ)])
(1)

From the robot’s perspective, every piece of feedback c is an observation about the true reward parameterization θ∗, so
the robot can use Bayesian inference to infer a posterior over θ. Given a prior over reward parameters P(θ), the RRiC
inference procedure is defined as:

P(θ | c, C) ∝
exp(β · Eξ∼ψ(c)[rθ(ξ)]∑

c′∈C exp(β · Eξ∼ψ(c′)[rθ(ξ)])
· P(θ) (2)

Since we care about misspecification of the choice set C, we focus on learning from demonstrations, where we restrict
the set of trajectories that the expert can demonstrate. This enables us to have a rich choice set, while allowing for a
simple grounding function (the identity). In future work, we aim to test choice set misspecification with other feedback
modalities as well.

3 Choice Set Misspecification

For many common forms of feedback, including demonstrations and proxy rewards, the RRiC choice set is implicit.
The robot knows which element of feedback the human provided (ex. which demonstration they performed), but must
assume which elements of feedback the human could have provided based on their model of the human. However, this
assumption could easily be incorrect – the robot may assume that the human has capabilities that they do not, or may
fail to account for cognitive biases that blind the human to particular feedback options, such as the human bias towards
the most visually attention-grabbing choice in Fig 1.

To model such effects, we assume that the human selects feedback c ∈ CHuman according to P(c | θ, CHuman),
while the robot updates their belief assuming a different choice set CRobot to get P(θ | c, CRobot). Note that CRobot
is the robot’s assumption about what the human’s choice set is – this is distinct from the robot’s action space. When
CHuman 6= CRobot, we get choice set misspecification.

It is easy to detect such misspecification when the human chooses feedback c /∈ CR. In this case, the robot observes a
choice that it believes to be impossible, which should certainly be grounds for reverting to some safe baseline policy.
So, we only consider the case where the human’s choice c is also present in CR (which also requires CH and CR to
have at least one element in common).

Within these constraints, we propose a classification of types of choice set misspecification in Table 1. On
the vertical axis, misspecification is classified according to the location of the optimal element of feedback
c∗ = argmaxc∈CR∪CH

Eξ∼ψ(c)[rθ∗(ξ))]. If c∗ is available to the human (in CH ), then the class code begins with A.
We only consider the case where c∗ is also in CR: the case where it is in CH but not CR is uninteresting, as the robot
would observe the “impossible” event of the human choosing c∗, which immediately demonstrates misspecification at
which point the robot should revert to some safe baseline policy. If c∗ /∈ CH , then we must have c∗ ∈ CR (since it
was chosen from CH ∪ CR), and the class code begins with B. On the horizontal axis, misspecification is classified
according to the relationship between CR and CH . CR may be a subset (code 1), superset (code 2), or intersecting class
(code 3) of CH . For example, class A1 describes the case in which the robot’s choice set is a subset of the human’s
(perhaps because the human is more versatile), but both choice sets contain the optimal choice (perhaps because it is
obvious).
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Figure 2: The set of four gridworlds used in randomized experiments, with the lava feature marked in red.

4 Experiments

To determine the effects of misspecification class, we artificially generated CR and CH with the properties of each
particular class, simulated human feedback, ran RRiC reward inference, and then evaluated the robot’s resulting belief
distribution and optimal policy.

4.1 Experimental Setup

Environment To isolate the effects of misspecification and allow for computationally tractable Bayesian inference,
we ran experiments in toy environments. We ran the randomized experiments in the four 20× 20 gridworlds shown
in Fig 2. Each square in environment x is a state sx = {lava, goal}. lava ∈ [0, 1] is a continuous feature, while
goal ∈ {0, 1} is a binary feature set to 1 in the lower-right square of each grid and 0 everywhere else. The true
reward function rθ∗ is a linear combination of these features and a constant stay-alive cost incurred at each timestep,
parameterized by θ = (wlava, wgoal, walive). Each episode begins with the robot in the upper-left corner and ends once
the robot reaches the goal state or episode length reaches the horizon of 35 timesteps. Robot actions AR move the
robot one square in a cardinal or diagonal direction, with actions that would move the robot off of the grid causing it to
remain in place. The transition function T is deterministic. Environment x defines an MDP Mx = 〈Sx, AR, T, rθ∗〉.

Inference While the RRiC framework enables inference from many different types of feedback, we use demonstration
feedback here because demonstrations have an implicit choice set and straightforward deterministic grounding. Only
the human knows their true reward function parameterization θ∗. The robot begins with a uniform prior distribution over
reward parameters P(θ) in which wlava and walive vary, but wgoal always = 2.0. P(θ) contains θ∗. RRiC inference
proceeds as follows for each choice set tuple 〈CR, CH〉 and environment x. First, the simulated human selects the
best demonstration from their choice set with respect to the true reward cH = argmaxc∈CH

Eξ∼ψ(c)[rθ∗(ξ))]. Then,
the simulated robot uses Eq. 2 to infer a “correct” distribution over reward parameterizations BH(θ) , P(θ | c, CH)

using the true human choice set, and a “misspecified” distribution BR(θ) , P(θ | c, CR) using the misspecified
human choice set. In order to evaluate the effects of each distribution on robot behavior, we define new MDPs
Mx
H = 〈Sx, AR, T, rE[BH(θ)]〉 and Mx

R = 〈Sx, AR, T, rE[BR(θ)]〉 for each environment, solve them using value
iteration, and then evaluate the rollouts of the resulting deterministic policies according to the true reward function rθ∗ .

4.2 Randomized Choice Sets

We ran experiments with randomized choice set selection for each misspecification class to evaluate the effects of class
on entropy change and regret.

Conditions The experimental conditions are the classes of choice set misspecification in Table 1: A1, A2, A3, B2 and
B3. We tested each misspecification class on each environment, then averaged across environments to evaluate each
class. For each environment x, we first generated a master set CxM of all demonstrations that are optimal w.r.t. at least
one reward parameterization θ. For each experimental class, we randomly generated 6 valid 〈CR, CH〉 tuples, with
CR, CH ⊆ CxM . Duplicate tuples, or tuples in which cH /∈ CR, were not considered.

Measures There are two key experimental measures: entropy change and regret. Entropy change is the difference in
entropy between the correct distribution BH , and the misspecified distribution BR. That is, ∆H = H(BH)−H(BR).
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(a) CH (b) CR

Figure 3: Human and robot choice sets with a human goal bias. Because the human only considers trajectories that
terminate at the goal, they don’t consider the blue trajectory in CR.

If entropy change is positive, then misspecification induces overconfidence, and if it is negative, then misspecification
induces underconfidence.

Regret is the difference in return between the optimal solution to Mx
H , with the correctly-inferred reward param-

eterization, and the optimal solution to Mx
R, with the incorrectly-inferred parameterization, averaged across all

4 environments. If ξ∗xH is an optimal trajectory in Mx
H and ξ∗xR is an optimal trajectory in Mx

R, then regret =
1
4

∑3
x=0[rθ∗(ξ

∗x
H ) − rθ∗(ξ∗xR )]. Note that we are measuring regret relative to the optimal action under the correctly

specified belief, rather than optimal action under the true reward. As a result, it is possible for regret to be negative,
e.g. if the misspecification makes the robot become more confident in the true reward than it would be under correct
specification, and so execute a better policy.

4.3 Biased Choice Sets

We also ran an experiment in a fifth gridworld where we select the human choice set with a realistic human bias
to illustrate how choice set misspecification may arise in practice. In this experiment the human only considers
demonstrations that end at the goal state because, to humans, the word “goal” can be synonymous with “end” (Fig 3a).
However, to the robot, the goal is merely one of multiple features in the environment. The robot has no reason to
privilege it over the other features, so the robot considers every demonstration that is optimal w.r.t some possible reward
parameterization (Fig 3b). The trajectory that only the robot considers is marked in blue. We ran RRiC inference using
this 〈CR, CH〉 and evaluated the results using the same measures described above.

5 Results

We summarize the aggregated measures, discuss the realistic human bias result, then examine two interesting results:
symmetry between classes A1 and A2 and high regret in class B3.

5.1 Aggregate Measures in Randomized Experiments

Entropy Change Entropy change varied significantly across misspecification class. As shown in Fig 4, the interquar-
tile ranges (IQRs) of classes A1 and A3 did not overlap with the IQRs of A2 and B2. Moreover, A1 and A3 had positive
medians, suggesting a tendency toward overconfidence, while A2 and B2 had negative medians, suggesting a tendency
toward underconfidence. B3 was less distinctive, with an IQR that overlapped with that of all other classes. Notably, the
distributions over entropy change of classes A1 and A2 are precisely symmetric about 0.

Regret Regret also varied as a function of misspecification class. Each class had a median regret of 0, suggesting that
misspecification commonly did not induce a large enough shift in belief for the robot to learn a different optimal policy.
However the mean regret, plotted as green lines in Fig 5, did vary markedly across classes. Regret was sometimes so
high in class B3 that outliers skewed the mean regret beyond of the whiskers of the boxplot. Again, classes A1 and
A2 are precisely symmetric. We discuss this symmetry in Section 5.3, then discuss the poor performance of B3 in
Section 5.4.
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Figure 4: Entropy Change (N=24). The box is the IQR, the whiskers are the range, and the blue line is the median.
There are no outliers.

Figure 5: Regret (N=24). The box is the IQR, the whiskers are the most distant points within 1.5*the IQR, and the
green line is the mean. Multiple outliers are omitted.

5.2 Effects of Biased Choice Sets

The human bias of only considering demonstrations that terminate at the goal leads to very poor inference in this
environment. Because the human does not consider the blue demonstration from Fig 3b, which avoids the lava altogether,
they are forced to provide the demonstration in Fig 6a, which terminates at the goal but is long and encounters lava. As
a result, the robot infers the very incorrect belief distribution in Fig 6b. Not only is this distribution underconfident
(entropy change = −0.614), but it also induces poor performance (regret = 0.666). This result shows that we can see an
outsized negative impact on robot reward inference with a small incorrect assumption that the human considered and
rejected demonstrations that don’t terminate at the goal.

5.3 Symmetry

Intuitively, misspecification should lead to worse performance in expectation. Surprisingly, when we combine mis-
specification classes A1 and A2, their impact on entropy change and regret is actually neutral. The key to this is their
symmetry – if we switch the contents of CRobot and CHuman in an instance of class A1 misspecification, we get an
instance of class A2 with exactly the opposite performance characteristics. Thus, if a pair in A1 is harmful, then the
analogous pair in A2 must be helpful, meaning that it is better for performance than having the correct belief about the

6



Presented at the IJCAI-PRICAI 2020 Workshop on Artificial Intelligence Safety

(a) feedback cH (b) P(θ | cH , CR)

Figure 6: Human feedback and the resulting misspecified robot belief with a human goal bias. Because the feedback
that the biased human provides is poor, the robot learns a very incorrect distribution over rewards.

human’s choice set. We show below that this is always the case under certain symmetry conditions that apply to A1 and
A2.

Assume that there is a master choice set CM containing all possible elements of feedback for MDP M , and that choice
sets are sampled from a symmetric distribution over pairs of subsets D : 2CM × 2CM → [0, 1] with D(Cx, Cy) =
D(Cy, Cx) (where 2CM is the set of subsets of CM ). Let ER(rθ,M) be the expected return from maximizing the
reward function rθ in M . A reward parameterization is chosen from a shared prior P(θ) and CH , CR are sampled from
D. The human chooses the optimal element of feedback in their choice set cCH

= argmaxc∈CH
Eξ∼ψ(c)[rθ∗(ξ))].

Theorem 1. Let M and D be defined as above. Assume that ∀Cx, Cy ∼ D, we have cCx = cCy ; that is, the human
would pick the same feedback regardless of which choice set she sees. If the robot follows RRiC inference according to
Eq. 2 and acts to maximize expected reward under the inferred belief, then:

E
CH ,CR∼D

Regret(CH , CR) = 0

Proof. Define R(Cx, c) to be the return achieved when the robot follows RRiC inference with choice set Cx and
feedback c, then acts to maximize rE[Bx(θ)], keeping β fixed. Since the human’s choice is symmetric across D, for any
Cx, Cy ∼ D, regret is anti-symmetric:

Regret(Cx, Cy) = R(Cx, cCx)−R(Cy, cCx)

= R(Cx, cCy )−R(Cy, cCy )

= −Regret(Cy, Cx)

Since D is symmetric, 〈Cx, Cy〉 is as likely as 〈Cy, Cx〉. Combined with the anti-symmetry of regret, this implies that
the expected regret must be zero:

E
Cx,Cy∼D

[Regret(Cx, Cy)]

=
1

2
E

Cx,Cy

[Regret(Cx, Cy)] +
1

2
E

Cx,Cy

[Regret(Cy, Cx)]

=
1

2
E

Cx,Cy

[Regret(Cx, Cy)]− 1

2
E

Cx,Cy

[Regret(Cx, Cy)]

= 0

An analogous proof would work for any anti-symmetric measure (including entropy change).

5.4 Worst Case

As shown in Table 4, class B3 misspecification can induce regret an order of magnitude worse than the maximum regret
induced by classes A3 and B2, which each differ from B3 along a single axis. This is because the worst case inference
occurs in RRiC when the human feedback cH is the worst element of CR, and this is only possible in class B3. In class
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Class Mean Std Q1 Q3

A1 0.256 0.2265 0.1153 0.4153

A2 -0.256 0.2265 -0.4153 -0.1153

Table 2: Entropy change is symmetric across classes A1 and A2.

Class Mean Std Q1 Q3

A1 0.04 0.4906 0.1664 0.0

A2 -0.04 0.4906 0.0 -0.1664

Table 3: Regret is symmetric across classes A1 and A2.

B2, CR contains all of CH , so as long as |CH | > 1, CR must contain at least one element worse than CH . In class A3,
cH = c∗, so CR cannot contain any elements better than cH . However, in class B3, CR need not contain any elements
worse than cH , in which case the robot updates its belief in the opposite direction from the ground truth.

For example, consider the sample human choice set in Fig 7a. Both trajectories are particularly poor, but the human
chooses the demonstration cH in Fig 7b because it encounters slightly less lava and so has a marginally higher reward.
Fig 8a shows a potential corresponding robot choice set CR2 from B2, containing both trajectories from the human
choice set as well as a few others. Fig 8b shows P(θ | cH , CR2). The axes represent the weights on the lava and
alive features and the space of possible parameterizations lies on the circle where wlava + walive = 1. The opacity
of the gold line is proportional to the weight that P(θ) places on each parameter combination. The true reward has
wlava, walive < 0, whereas the peak of this distribution has wlava < 0, but walive > 0. This is because CR2 contains
shorter trajectories that encounter the same amount of lava, and so the robot infers that cH must be preferred in large
part due to its length.

Fig 9a shows an example robot choice set CR3 from B3, and Fig 9b shows the inferred P(θ | cH , CR3). Note that the
peak of this distribution has wlava, walive > 0. Since cH is the longest and the highest-lava trajectory in CR3, and
alternative shorter and lower-lava trajectories exist in CR3, the robot infers that the human is attempting to maximize
both trajectory length and lava encountered: the opposite of the truth. Unsurprisingly, maximizing expected reward for
this belief leads to high regret. The key difference between B2 and B3 is that cH is the lowest-reward element in CR3,
resulting in the robot updating directly away from the true reward.

6 Discussion

Summary In this work, we highlighted the problem of choice set misspecification in generalized reward inference,
where a human gives feedback selected from choice set CHuman but the robot assumes that the human was choosing
from choice set CRobot. As expected, such misspecification on average induces suboptimal behavior resulting in regret.
However, a different story emerged once we distinguished between misspecification classes. We defined five distinct

Class Mean Std Max Min

A3 -0.001 0.5964 1.1689 -1.1058

B2 0.228 0.6395 1.6358 -0.9973

B3 2.059 6.3767 24.7252 -0.9973

Table 4: Regret comparison showing that class B3 has much higher regret than neighboring classes.
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(a) CH (b) cH

Figure 7: Example human choice set and corresponding feedback.

(a) CR2 (b) P(θ | cH , CR2)

Figure 8: Robot choice set and resulting misspecified belief in B2.

classes varying along two axes: the relationship between CHuman and CRobot and the location of the optimal element
of feedback c∗. We empirically showed that different classes lead to different types of error, with some classes leading
to overconfidence, some to underconfidence, and one to particularly high regret. Surprisingly, under certain conditions
the expected regret under choice set misspecification is actually 0, meaning that in expectation, misspecification does
not hurt in these situations.

Implications There is wide variance across the different types of choice-set misspecification: some may have
particularly detrimental effects, and others may not be harmful at all. This suggests strategies for designing robot
choice sets to minimize the impact of misspecification. For example, we find that regret tends to be negative (that
is, misspecification is helpful) when the optimal element of feedback is in both CRobot and CHuman and CRobot ⊃
CHuman (class A2). Similarly, worst-case inference occurs when the optimal element of feedback is in CRobot only,
and CHuman contains elements that are not in CRobot (class B3). This suggests that erring on the side of specifying a
large CRobot, which makes A2 more likely and B3 less, may lead to more benign misspecification. Moreover, it may be
possible to design protocols for the robot to identify unrealistic choice set-feedback combinations and verify its choice
set with the human, reducing the likelihood of misspecification in the first place. We plan to investigate this in future
work.

(a) CR3 (b) P(θ | cH , CR3)

Figure 9: Robot choice set and resulting misspecified belief in B3.
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Limitations and future work. In this paper, we primarily sampled choice sets randomly from the master choice set
of all possibly optimal demonstrations. However, this is not a realistic model. In future work, we plan to select human
choice sets based on actual human biases to improve ecological validity. We also plan to test this classification and
our resulting conclusions in more complex and realistic environments. Eventually, we plan to work on active learning
protocols that allow the robot to identify when its choice set is misspecified and alter its beliefs accordingly.
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